
ares Documentation
Release 0.1

Jordan Mirocha

Oct 02, 2017

Contents

1 Quick-Start 3

2 Contents 5

i

ii

ares Documentation, Release 0.1

The Accelerated Reionization Era Simulations (ares) code was designed to rapidly generate models for the global
21-cm signal. It can also be used as a 1-D radiative transfer code, stand-alone non-equilibrium chemistry solver, or
meta-galactic radiation background calculator.

A few papers on how it works:

• 1-D radiative transfer: Mirocha et al. (2012).

• Uniform backgrounds & global 21-cm signal: Mirocha (2014).

• Parameter inference: Mirocha, Harker, & Burns (2015).

• Galaxy luminosity functions: Mirocha, Furlanetto, & Sun (2017).

Be warned: this code is still under active development – use at your own risk! Correctness of results is not guaranteed.
This documentation is as much of a work in progress as the code itself, so if you encounter gaps or errors please do let
me know.

Current status:

Contents 1

http://adsabs.harvard.edu/abs/2012ApJ...756...94M
http://adsabs.harvard.edu/abs/2014arXiv1406.4120M
http://adsabs.harvard.edu/abs/2015ApJ...813...11M
http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M

ares Documentation, Release 0.1

2 Contents

CHAPTER 1

Quick-Start

To make sure everything is working, a quick test is to generate a realization of the global 21-cm signal using all default
parameter values:

import ares

sim = ares.simulations.Global21cm()
sim.run()
sim.GlobalSignature()

See example_gs_standard in Examples for a more thorough introduction to this type of calculation.

3

ares Documentation, Release 0.1

4 Chapter 1. Quick-Start

CHAPTER 2

Contents

Installation

ares depends on:

• numpy

• scipy

• matplotlib

and optionally:

• progressbar2

• hmf

• emcee

• distpy

• mpi4py

• h5py

• setuptools

• mpmath

• shapely

• descartes

If you have mercurial installed, you can clone ares and its entire revision history via:

hg clone https://bitbucket.org/mirochaj/ares ares
cd ares
python setup.py install

5

http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net
http://progressbar-2.readthedocs.io/en/latest/
http://hmf.readthedocs.org/en/latest/
http://dan.iel.fm/emcee/current/
https://bitbucket.org/ktausch/distpy
http://mpi4py.scipy.org
http://www.h5py.org/
https://pypi.python.org/pypi/setuptools
http://mpmath.googlecode.com/svn-history/r1229/trunk/doc/build/setup.html
https://pypi.python.org/pypi/Shapely
https://pypi.python.org/pypi/descartes

ares Documentation, Release 0.1

If you do not have mercurial installed, and would rather just grab a tarball of the most recent version, select the
Download repository option on bitbucket.

You’ll need to set an environment variable which points to the ares install directory, e.g. (in bash)

export ARES=/users/<yourusername>/ares

ares will look in $ARES/input for lookup tables of various kinds. To download said lookup tables, run

python remote.py

This might take a few minutes. If something goes wrong with the download, you can run

python remote.py fresh

to get fresh copies of everything. If you’re concerned that a download may have been interrupted and/or the file appears
to be corrupted (strange I/O errors may indicate this), you can also just download fresh copies of the particular file you
want to replace. For example, to grab a fresh initial conditions file, simply do

python remote.py fresh inits

ares branches

ares has two main branches. The first, default, is meant to be stable, and will only be updated with critical bug
fixes or upon arrival at major development milestones. The “bleeding edge” lives in the ares-dev branch, and while
you are more likely to find bugs in ares-dev, you will also find the newest features.

By default after you clone ares you’ll be using the default branch. To switch, simply type:

hg update ares-dev

To switch back,

hg update default

For a discussion of the pros and cons of different branching techniques in mercurial, this article is a nice place to start.

ares versions

The first stable release of ares was used in Mirocha et al. (2015), and is tagged as v0.1 in the revision history. The tag
v0.2 is associated with Mirocha, Furlanetto, & Sun (2017). Note that these tags are just shortcuts to specific revisions.
You can switch between them just like you would switch between branches, e.g.,

hg update v0.2

If you’re unsure which version is best for you, see the Development History.

Don’t have Python already?

If you do not already have Python installed, you might consider downloading yt, which has a convenient installation
script that will download and install Python and many commonly-used Python packages for you. Anaconda is also
good for this.

6 Chapter 2. Contents

https://bitbucket.org/mirochaj/ares/downloads
http://stevelosh.com/blog/2009/08/a-guide-to-branching-in-mercurial/
http://adsabs.harvard.edu/abs/2015ApJ...813...11M
http://adsabs.harvard.edu/abs/2017MNRAS.464.1365M
http://yt-project.org/
https://www.continuum.io/downloads

ares Documentation, Release 0.1

Help

If you encounter problems with installation or running simple scripts, first check the Troubleshooting page in the
documentation to see if you’re dealing with a common problem. If you don’t find your problem listed there, please let
me know!

Examples

Running Individual Simulations

• Reionization & Global 21-cm Signal

– example_gs_standard

– example_gs_phenomenological

• Uniform Radiation Backgrounds

– example_crb_uv

– example_crb_xr

• 1-D Radiative Transfer

– example_rt06_1

– example_rt06_2

Parameter Studies and Inference

• Running Large Suites of Models

– example_grid

– example_mc_sampling

• Fitting and Forecasting

– example_mcmc_gs

– example_mcmc_lf

• Analyzing Sets of Models

– example_inline_analysis

– example_grid_analysis

– example_mcmc_analysis

Extensions

• example_adv_RT_w_He

• example_galaxypop

• example_litdata

2.2. Examples 7

ares Documentation, Release 0.1

Under the Hood

Super incomplete, sorry!

Parameters, Fields, and Data Structures

• params

• fields

• inits_tables

Source Populations

• uth_pop_sfrd

• uth_pop_radiation

Solvers

• uth_solver_chem

Troubleshooting

This page is an attempt to keep track of common errors and instructions for how to fix them. If you encounter a bug not
listed below, fork ares on bitbucket and an issue a pull request to contribute your patch, if you have one. Otherwise,
shoot me an email and I can try to help. It would be useful if you can send me the dictionary of parameters for a
particular calculation. For example, if you ran a global 21-cm calculation via

import ares

pars = {'parameter_1': 1e6, 'parameter_2': 2} # or whatever

sim = ares.simulations.Global21cm(**pars)
sim.run()

and you get weird or erroneous results, pickle the parameters:

import pickle
f = open('problematic_model.pkl', 'wb')
pickle.dump(pars, f)
f.close()

and send them to me. Thanks!

Note: If you’ve got a set of problematic models that you encountered while running a model grid or
some such thing, check out the section on “problem realizations” in example_grid_analysis.

8 Chapter 2. Contents

https://bitbucket.org/mirochaj/ares/fork

ares Documentation, Release 0.1

Plots not showing up

If when running some ares script the program runs to completion without errors but does not produce a figure, it
may be due to your matplotlib settings. Most test scripts use draw to ultimately produce the figure because it is
non-blocking and thus allows you to continue tinkering with the output if you’d like. One of two things is going on:

• You invoked the script with the standard Python interpreter (i.e., not iPython). Try running it with iPython,
which will spit you back into an interactive session once the script is done, and thus keep the plot window open.

• Alternatively, your default matplotlib settings may have caused this. Check out your matplotlibrc file
(in $HOME/.matplotlibrc) and make sure interactive : True.

Future versions of ares may use blocking commands to ensure that plot windows don’t disappear immediately. Email
me if you have strong opinions about this.

IOError: No such file or directory

There are a few different places in the code that will attempt to read-in lookup tables of various sorts. If you get any
error that suggests a required input file has not been found, you should:

• Make sure you have set the $ARES environment variable. See the Installation page for instructions.

• Make sure the required file is where it should be, i.e., nested under $ARES/input.

In the event that a required file is missing, something has gone wrong. Run python remote.py fresh to
download new copies of all files.

LinAlgError: singular matrix

This is known to occur in ares.physics.Hydrogen when using scipy.interpolate.interp1d to com-
pute the collisional coupling coefficients for spin-exchange. It is due to a bug in LAPACK version 3.4.2 (see this
thread). One solution is to install a newer version of LAPACK. Alternatively, you could use linear interpolation,
instead of a spline, by passing interp_cc='linear' as a keyword argument to whatever class you’re instantiat-
ing, or more permanently by adding interp_cc='linear' to your custom defaults file (see params section for
instructions).

21-cm Extrema-Finding Not Working

If the derivative of the signal is noisy (due to numerical artifacts, for example) then the extrema-finding can fail. If you
can visually see three extrema in the global 21-cm signal but they are either absent or crazy in ares.simulations.
Global21cm.turning_points, then this might be going on. Try setting the smooth_derivative pa-
rameter to a value of 0.1 or 0.2. This parameter will smooth the derivative with a boxcar of width ∆𝑧 =
smooth_derivative before performing the extrema finding. Let me know if this happens (and under what cir-
cumstances), as it would be better to eliminate numerical artifacts than to smooth them out after the fact.

AttributeError: No attribute blobs.

This is a bit of a red herring. If you’re running an MCMC fit and saving 2-D blobs, which always require you to pass
the name of the function, this error occurs if you supply a function that does not exist. Check for typos and/or that the
function exists where it should.

2.4. Troubleshooting 9

https://github.com/scipy/scipy/issues/3868
https://github.com/scipy/scipy/issues/3868

ares Documentation, Release 0.1

TypeError: __init__() got an unexpected keyword argument
'assume_sorted'

Turns out this parameter didn’t exist prior to scipy version 0.14. If you update to scipy version >= 0.14, you should
be set. If you’re worried that upgrading scipy might break other codes of yours, you can also simply navigate to
ares/physics/Hydrogen.py and delete each occurrence of assume_sorted=True, which should have no
real effect (except for perhaps a very slight slowdown).

Failed to interpret file '<some-file>.npz' as a pickle

This is a strange one, which might arise due to differences in the Python and/or pickle version used to read/write
lookup tables ares uses. First, try to download new lookup tables via:

python remote.py fresh

If that doesn’t magically fix it, please email me and I’ll do what I can to help!

General Mysteriousness

• If you’re running ares from within an iPython (or Jupyter) notebook, be wary of initializing class instances in
one notebook cell and modifying attributes in a separate cell. If you re-run the the second cell without re-running
the first cell, this can cause problems because changes to attributes will not automatically propagate back up to
any parent classes (should they exist). This is known to happen (at least) when using the ModelGrid and
ModelSamples classes in the inference sub-module.

ares Development: Staying Up To Date

Things are changing fast! To keep up with advancements, a working knowledge of mercurial will be very useful. If
you’re reading this, you may already be familiar with mercurial to some degree, as its clone command can be used
to checkout a copy of the most-up-to-date version (the ‘’tip” of development) from bitbucket. For example (as in
Installation),

hg clone https://bitbucket.org/mirochaj/ares ares
cd ares
python setup.py install

If you don’t plan on making changes to the source code, but would like to make sure you have the most up-to-date
version of ares, you’ll want to use the hg pull command regularly, i.e., simply type

hg pull

from anywhere within the ares folder. After entering your bitbucket credentials, fresh copies of any files that have
been changed will be downloaded. In order to accept those updates, you should then type:

hg update

or simply hg up for short. Then, to re-install ares:

python setup.py install

10 Chapter 2. Contents

https://mercurial.selenic.com/

ares Documentation, Release 0.1

If you plan on making changes to ares, you should fork it so that your line of development can run in parallel with the
‘’main line” of development. Once you’ve forked, you should clone a copy just as we did above. For example (note
the hyperlink change),

hg clone https://bitbucket.org/mirochaj/ares-jordan ares-jordan
cd ares-jordan
python setup.py install

There are many good tutorials online, but in the following sections we’ll go through the commands you’ll likely be
using all the time.

Checking the Status of your Fork

You’ll typically want to know if, for example, you have changed any files recently and if so, what changes you have
made. To do this, type:

hg status

This will print out a list of files in your fork that have either been modified (indicated with M), added (A), removed (R),
or files that are not currently being tracked (?). If nothing is returned, it means that you have not made any changes to
the code locally, i.e., you have no ‘’outstanding changes.’‘

If, however, some files have been changed and you’d like to see just exactly what changes were made, use the diff
command. For example, if when you type hg status you see something like:

M tests/test_solver_chem_h.py

follow-up with:

hg diff tests/test_solver_chem_h.py

and you’ll see a modified version of the file with + symbols indicating additions and - signs indicating removals. If
there have been lots of changes, you may want to pipe the output of hg diff to, e.g., the UNIX program less:

hg diff tests/test_solver_chem_h.py | less

and use u and d to navigate up and down in the output.

Making Changes and Pushing them Upstream

If you convince yourself that the changes you’ve made are good changes, you should absolutely save them and beam
them back up to the cloud. Your changes will either be:

• Modifications to a pre-existing file.

• Creation of an entirely new file.

If you’ve added new files to ares, they should get an ? indicator when you type hg status, meaning they are
untracked. To start tracking them, you need to add them to the repository. For example, if we made a new file
tests/test_new_feature.py, we would do:

hg add tests/test_new_feature.py

Upon typing hg status again, that file should now have an A indicator to its left.

If you’ve modified pre-existing files, they will be marked M by hg status. Once you’re happy with your changes,
you must commit them, i.e.:

2.5. ares Development: Staying Up To Date 11

https://bitbucket.org/mirochaj/ares/fork

ares Documentation, Release 0.1

hg commit -m "Made some changes."

The -m indicates that what follows in quotes is the ‘’commit message” describing what you’ve done. Commit messages
should be descriptive but brief, i.e., try to limit yourself to a sentence (or maybe two), tops. You can see examples of
this in the ares commit history.

Note that your changes are still local, meaning the ares repository on bitbucket is unaware of them. To remedy that,
go ahead and push:

hg push

You’ll once again be prompted for your credentials, and then (hopefully) told how many files were updated etc.

If you get some sort of authorization error, have a look at the following file:

$ARES/.hg/hgrc

You should see something that looks like

[paths]
default = https://username@bitbucket.org/username/fork-name

[ui]
username = John Doe <johndoe@gmail.com>

If you got an authorization error, it is likely information in this file was either missing or incorrect. Remember that
you won’t have push access to the main ares repository: just your fork (hence the use of ‘’fork-name” above).

Contributing your Changes to the main repository

If you’ve made changes, you should let us know! The most formal way of doing so is to issue a pull request (PR),
which alerts the administrators of ares to review your changes and pull them into the main line of ares development.

Dealing with Conflicts

Will cross this bridge when we come to it!

ares Development: Contributing!

If ares lacks functionality you’re interested in, but seems to exhibit some features you’d like to make use of, adapting
it to suit your purpose should (in principle) be fairly straightforward. The following sections describe how you might
go about doing this.

If you end up developing something that might be useful for others and are willing to share, you should absolutely
fork ares on bitbucket. Feel free to shoot me an email if you need help getting started!

Adding new modules: general rules

There are a few basic rules to follow in adding new modules to ares that should prevent major crashes. They are
covered below.

12 Chapter 2. Contents

https://bitbucket.org/mirochaj/ares/commits/all
https://bitbucket.org/mirochaj/ares/fork

ares Documentation, Release 0.1

Imports

First and foremost, when you write a new module you should follow the hierarchy that’s already in place. Below, the
pre-existing sub-modules within ares are listed in an order representative of that hierarchy:

• inference

• simulations

• solvers

• static

• populations, sources

• physics, util, analysis

It will hopefully be clear which sub-module your new code ought to be added to. For example, if you’re writing code
to fit a particular kind of dataset, you’ll want to add your new module to ares.inference. If you’re creating
new kinds of source populations, ares.populations, and so on. If you’re adding new physical constants, rate
coefficients, etc., look at ares.physics.Constants and ares.physics.RateCoefficients.

Now, you’ll (hopefully) be making use of at least some pre-existing capabilities of ares, which means your module
will need to import classes from other sub-modules. There is only one rule here:

When writing a new class, let’s say within sub-module X, you cannot import classes from sub-modules Y that
lie above X in the hierarchy.

This is to prevent circular imports (which result in recursion errors).

Inheritance

You might also want to inherit pre-existing classes rather than simply making new instances of them in your own.
For example, if creating a class to represent a new type of source population, it would be wise to inherit the ares.
populations.Population class, which has a slew of convenience routines. More on that later.

Again, there’s only one rule, which is related to the hierarchy listed in the above section:

Parent Classes (i.e., those to be inherited) must be defined either at the same level in the hierarchy as the Child
Classes or below.

This follows from the rule about imports, since a class must be either defined locally or imported before it can be
inherited.

Development History

ares used to exist as two separate codes: rt1d and glorb, which were introduced in Mirocha et al. (2012) and Mirocha
(2014), respectively. Since then, the codes have been combined and restructured to provide a more unified framework
for doing radiative transfer calculations, modeling of the global 21-cm signal, and exploring all types of parameter
spaces using MCMC.

Here’s an attempt to keep track of major changes to the code over time, which will be tagged in the bitbucket repository
with version numbers. I haven’t followed conventions for version numbering so far. Instead, I’ve simply tagged
commits with a version number when a paper is submitted using that version of the code (e.g., v0.1 and v0.2), or when
a series of noteworthy improvements or bug fixes have been made (v0.3).

2.7. Development History 13

http://adsabs.harvard.edu/abs/2012ApJ...756...94M
http://adsabs.harvard.edu/abs/2014arXiv1406.4120M
http://adsabs.harvard.edu/abs/2014arXiv1406.4120M

ares Documentation, Release 0.1

v0.3

• Updated to work with hmf version 2.0.1.

• Bug fix in 𝑆𝛼 calculation for Furlanetto & Pritchard (2006): sign error in higher order terms.

• Generalized HaloProperty objects from version 0.2 to allow dependence on any number of arbitrary quantities.
Now called ParameterizedQuantity object.

v0.2

This is the version of the code used in Mirocha, Furlanetto, & Sun (submitted).

Main (new) features:

• Can model the star-formation efficiency as a mass- and redshift-dependent quantity using HaloProperty objects.

• This, coupled with the GalaxyPopulation class, allows one to generate models of the galaxy luminosity function.
Also possible to fit real datasets (using ares.inference.FitLuminosityFunction module).

• Creation of a litdata module to facilitate use of data from the literature. At the moment, this includes recent mea-
surements of the galaxy luminosity function and stellar population synthesis models (starburst99 and BPASS).

• Creation of ParameterBundle objects to ease the initialization of calculations.

v0.1

This is the version of the code used in Mirocha et al. (2015).

Main features:

• Simple physical models for the global 21-cm signal available.

• Can use * emcee to fit these models to data.

14 Chapter 2. Contents

http://hmf.readthedocs.org/en/latest/
http://arxiv.org/abs/1607.00386
http://arxiv.org/abs/1509.07868
http://dan.iel.fm/emcee/current/

	Quick-Start
	Contents

